首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5050篇
  免费   488篇
  国内免费   614篇
林业   366篇
农学   216篇
基础科学   308篇
  3854篇
综合类   904篇
农作物   42篇
水产渔业   57篇
畜牧兽医   81篇
园艺   23篇
植物保护   301篇
  2024年   26篇
  2023年   152篇
  2022年   232篇
  2021年   155篇
  2020年   208篇
  2019年   185篇
  2018年   171篇
  2017年   286篇
  2016年   301篇
  2015年   201篇
  2014年   195篇
  2013年   295篇
  2012年   355篇
  2011年   348篇
  2010年   299篇
  2009年   271篇
  2008年   301篇
  2007年   320篇
  2006年   318篇
  2005年   231篇
  2004年   188篇
  2003年   189篇
  2002年   134篇
  2001年   132篇
  2000年   88篇
  1999年   75篇
  1998年   69篇
  1997年   60篇
  1996年   63篇
  1995年   67篇
  1994年   57篇
  1993年   54篇
  1992年   30篇
  1991年   35篇
  1990年   28篇
  1989年   11篇
  1988年   9篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1955年   1篇
排序方式: 共有6152条查询结果,搜索用时 15 毫秒
61.
HE Qian 《干旱区科学》2020,12(5):865-886
Soil erosion in the Three-River Headwaters Region (TRHR) of the Qinghai-Tibet Plateau in China has a significant impact on local economic development and ecological environment. Vegetation and precipitation are considered to be the main factors for the variation in soil erosion. However, it is a big challenge to analyze the impacts of precipitation and vegetation respectively as well as their combined effects on soil erosion from the pixel scale. To assess the influences of vegetation and precipitation on the variation of soil erosion from 2005 to 2015, we employed the Revised Universal Soil Loss Equation (RUSLE) model to evaluate soil erosion in the TRHR, and then developed a method using the Logarithmic Mean Divisia Index model (LMDI) which can exponentially decompose the influencing factors, to calculate the contribution values of the vegetation cover factor (C factor) and the rainfall erosivity factor (R factor) to the variation of soil erosion from the pixel scale. In general, soil erosion in the TRHR was alleviated from 2005 to 2015, of which about 54.95% of the area where soil erosion decreased was caused by the combined effects of the C factor and the R factor, and 41.31% was caused by the change in the R factor. There were relatively few areas with increased soil erosion modulus, of which 64.10% of the area where soil erosion increased was caused by the change in the C factor, and 23.88% was caused by the combined effects of the C factor and the R factor. Therefore, the combined effects of the C factor and the R factor were regarded as the main driving force for the decrease of soil erosion, while the C factor was the dominant factor for the increase of soil erosion. The area with decreased soil erosion caused by the C factor (12.10×103 km2) was larger than the area with increased soil erosion caused by the C factor (8.30×103 km2), which indicated that vegetation had a positive effect on soil erosion. This study generally put forward a new method for quantitative assessment of the impacts of the influencing factors on soil erosion, and also provided a scientific basis for the regional control of soil erosion.  相似文献   
62.
为缓解人地关系,以对黑龙江省威胁最大的土壤侵蚀为切入点,从"三生"视角分析区域人地系统适应性,并提出基于不同修复优先级的人地系统修复方案。首先,在总结、梳理适应性内涵,整合适应性理论与方法基础上,从"三生"视角提出了基于风险扰动的适应性分析框架,将系统适应性分解为扰动、影响、响应、能力4方面,并从土壤侵蚀风险扰动出发,构建了系统适应性评价指标体系与评价模型;其次,采用极差标准化法、克里格插值法、蔡崇法法和DEA-CCR模型处理数据,利用土壤侵蚀方程测算土壤侵蚀风险,利用适应性评价模型测算适应性指数,分析土壤侵蚀风险和人地系统适应性分布情况;最后,提出基于不同修复优先级组合模式的人地系统修复方案。结果表明:黑龙江省土壤侵蚀风险区面积为1 366.61万hm2,占区域耕地面积的85.74%,高、中、低级别风险规模分别为324.02、596.33、446.26万hm2。高、较高级别人地系统适宜程度区分布在三江平原东北部和松嫩平原东南部地区,中级别分布在大兴安岭和松嫩平原南部地区,低、较低级别分布在东南部山地和松嫩平原北部地区。形成了基于不同修复优先级组合模式的人地系统修复方案,其中53个地区仅存在1种人地系统修复方案,其余27个地区在不同优先级组合模式下形成了不同的人地系统修复方案,为区域人地系统修复提供了多种选择方案。  相似文献   
63.
Northwesterly cold winds characteristic of the East Asian Winter Monsoon (EAWM) dictate winter climatic conditions over the Japanese Archipelago. Japanese temperate bass Lateolabrax japonicus is a commercially important coastal fish that spawns offshore in winter and uses shallow waters as nursery habitats. To investigate the effects of EAWM on the planktonic period of L. japonicus, eggs, larvae, and juveniles were quantitatively collected in Tango Bay on the Sea of Japan side in winter and spring from 2007 to 2017. Although eggs occurred close to the mouth of the bay, planktonic larvae occurred further inside as they developed. The horizontal distribution of planktonic larvae, combined with water velocity data obtained from mooring observations, indicated that planktonic larvae are transported south‐ to westward through Ekman current and an anticyclonic circulation, which are driven by northwesterly winds. To evaluate survival during the planktonic period in each year class, the abundance of benthic larvae/juveniles was divided by winter total landings of Lateolabrax spp. (proxy of the spawning stock size). This survival index exhibited a positive correlation with the northwesterly component of winter winds, and a negative correlation with winter air temperature (average from December to February, Spearman's correlation, p < .05). There was, however, no significant correlation with winter water temperature or winter freshwater discharge in the bay. We conclude that northwesterly cold winds of EAWM play a critical role in transporting L. japonicus eggs and larvae toward nursery habitats, specifically beaches and estuaries fringing the innermost part of Tango Bay.  相似文献   
64.
草地贪夜蛾缅甸虫源迁入中国的路径分析   总被引:11,自引:0,他引:11  
草地贪夜蛾Spodoptera frugiperda(J.E. Smith)对非洲和南亚国家的入侵已对全球粮食安全造成重大影响,该虫2018年年底已在缅甸形成虫源基地,并零星进入中国云南西南部地区。本文利用历史数据分析了缅甸和华南地区春、夏两季(3-8月)925 hPa夜间平均风温场,并模拟预测了缅甸地区草地贪夜蛾在此期间进入中国的迁飞轨迹以及主要降落和波及的地区。结果表明:3-4月盛行的微弱西风不利于远距离迁移,但成虫的自主飞行可形成对云南和广西局部地区的近距离入侵;进入5月份后,随着西南夏季风的加强,云南和广西全境成为缅甸虫源的主要迁入地,并可能波及贵州、广东、海南和湖南等省。因此,4月份之前要重点监控云南和广西地区草地贪夜蛾的发生与为害,此后,应将监控区域扩大至中国中南部地区的各个省份。  相似文献   
65.
利用中国740余站观测的月平均2 m气温资料以及NCEP/NCAR再分析资料,通过动力学诊断的方法,对2016—2017年中国冬季异常偏暖现象进行了研究。结果发现:中国2016—2017年冬季气温偏暖主要是由于西伯利亚高压和阿留申低压偏弱导致东亚冬季风偏弱,在中国存在异常的偏南风。阿留申低压偏弱由两个因素引起,一是由于阿留申群岛地区的海温偏低,冷源对应异常高压导致阿留申低压偏弱;二是阿留申低压在东亚副热带高空西风急流出口区以北,然而该冬季高空西风急流出口区位置偏南,导致阿留申地区偏离急流出口减压区,从而导致阿留申低压偏弱。此外,西风带偏北,中高纬亚洲大陆上空以纬向环流为主,不利于冷空气南下。  相似文献   
66.
[目的]探究黄麻土工布覆盖条件下花岗岩红壤表土坡面侵蚀特性,为花岗岩红壤区坡面土壤侵蚀防治提供科学依据。[方法]通过室内模拟降雨试验,在2个坡度(5°和15°坡度)、3种密度(无覆盖,6 cm×6 cm及3 cm×3 cm网格)的黄麻土工布覆盖条件下,研究极端降雨条件下(90 mm/h)花岗岩红壤表土的坡面侵蚀特性,并观测径流系数、土壤侵蚀速率、泥沙颗粒变化规律及富集率等指标。[结果]坡面径流随降雨历时增加而增加,土壤侵蚀速率则相反,表明侵蚀过程是一个分离受限的过程。和对照组相比,黄麻土工布覆盖在不同试验条件下都具有明显的减流减沙作用。另外,由侵蚀泥沙的粒径分选规律可知,坡面土壤中的黏粒和粉粒大小的颗粒倾向于被优先选择性搬运,其结果致使坡面石英粗颗粒富集,在缓坡(5°)与高密度黄麻土工布覆盖条件下(3 cm×3 cm网格)尤为突出。坡面石英粗颗粒随降雨历时增加不断富集进一步增加了原位坡面的侵蚀抗性,产生了土壤侵蚀速率随降雨历时不断降低的现象。[结论]高密度黄麻土工布的覆盖能够有效地减流减沙,增加原位坡面抗蚀性,是一种有效的水土保持措施,在今后的土壤侵蚀防治和劣地恢复工作中应该被重视。  相似文献   
67.
中国东北漫川漫岗典型黑土区沟道侵蚀特征   总被引:2,自引:0,他引:2  
[目的] 通过对450 km2黑土区进行实测调查,旨在评估研究区沟道侵蚀现状。[方法] 选取沟道侵蚀严重的450 km2的漫川漫岗黑土区为调查区域,首先在谷歌卫星影像上进行侵蚀沟识别和定位,再对侵蚀沟立体形态进行实地测量。[结果] ①研究区土地利用以耕地为主,耕地、建设用地、林地、草地分别占研究区总面积的85%,8%,6%,1%。②研究区坡耕地占86%,坡度0.25°~3.0°占64%,大于5°的占12%。③共有侵蚀沟1 049条,其中耕地中侵蚀沟577条,占总侵蚀沟条数的55%;沟壑密度1.2 km/km2,按沟壑密度衡量沟蚀强度为中度;沟壑面积比例为2.89%,以此界定沟蚀强度为剧烈。④研究区侵蚀沟平均长度、宽度、深度和面积分别为996,13.1,2.7 m和2.4 hm2。[结论] 漫川漫岗黑土区沟道侵蚀严重,主要危害坡耕地,但侵蚀沟相对较小,易于治理。  相似文献   
68.
华北平原冬小麦-夏玉米一年两熟种植模式为维护国家粮食安全发挥了重要作用。但冬小麦生长期正处于华北平原降水较少的干旱季节,实现高产依赖于灌溉,是华北平原地下水超采的主导因素之一。随着国家地下水限采政策的实施,在地下水超采区如何稳定冬小麦的种植面积和产量是面临的一个重要问题。本文通过综述以往研究并结合典型地点田间试验结果,从冬小麦种植可减少休闲期土壤蒸发损失、具有的深根系系统可充分利用土壤储水、可利用微咸水替代淡水灌溉、通过限水灌溉发展优质麦生产、冬春形成覆盖层美化和防沙尘效应等方面论述了华北平原种植冬小麦的优势,提出华北平原冬小麦生产需要转变传统高耗水高产量理念,充分发挥冬小麦抗旱、耐盐能力强的特点,在不实施大规模压缩冬小麦种植面积条件下,通过冬小麦限水灌溉和微咸水利用满足对地下水压采需求,充分发挥华北平原冬小麦种植冬春防风沙、美化环境的生态功能,同时满足区域口粮安全的保障功能。  相似文献   
69.
为对比不同结构尼龙网不同风速下的防风效应,开展对均匀型(A)、上密下疏型(B)、上疏下密型(C)3种不同结构尼龙网在6 m·s~(-1)、9 m·s~(-1)、12 m·s~(-1)指示风速下的风洞模拟试验。通过对不同结构尼龙网各风速下加速率等值线图和防风效能的对比分析,结果表明:1 3种结构尼龙网风场存在相似性但差异明显。B型尼龙网风影区下部存在加速区,A、C型则不存在;C型风影区中心位置较低。2 A、C型尼龙网防风效应随风速增大而降低,B型则相反。3测量范围内C型尼龙网防风效应明显优于A、B型。实际应用中应综合考虑沙障结构、风况等因素,尼龙网栅栏的布设建议选用上疏下密型结构。  相似文献   
70.
天津新型日光温室风灾风险评估及区划   总被引:1,自引:1,他引:0  
为了评估天津新型日光温室风灾风险,本研究在近10年天津日光温室风灾灾情大量实地调查的基础上,根据自然灾害风险评估理论,构建日光温室风灾风险评估模型,计算温室不同等级风灾风险指数,并从站点、空间、时间3个尺度分析了温室风灾风险指数的变化。风险指数站点结果和空间分布结果均表明,宁河、汉沽、塘沽、武清、西青等地是遭受轻、中度风灾风险较高地区。天津新型日光温室遭受轻度风灾的风险最高(风险指数介于0.62~3.15),明显高于中度(风险指数介于0.0~0.61)及重度风灾,而其遭受重度风灾的风险几乎为0,这与天津较少发生8级以上(最大17.2 m/s以上)大风有关。近10年日光温室中、重度风灾风险指数极小且变化基本持平,而轻度风灾风险指数从2005年的2.70逐渐降低至2007年的2.0,2007—2014年始终保持在2.0附近波动。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号